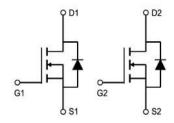



#### 1. Features


- Advanced trench cell design
- Low Thermal Resistance
- · Low Gate Charge

## 2. Mechanical Data

- Case:Molded Plastic,SOP-8.
- Epoxy:UL 94V-0 rate flame retardant
- Terminals:Plated Leads Solderable perMIL-STD-750,Method-2026.
- Marking:XNM10N03ST
- Mounting Position : Any.



- 1 Gate
- 2 Source
- 3 Drain



## 3. Maximum Ratings and Electrical Characteristics

Rating at 25℃ ambient temperature unless otherwise specified.

| Parameter                                                |                       | Symbol           | Value     | UNIT       |  |
|----------------------------------------------------------|-----------------------|------------------|-----------|------------|--|
| Drain-Source Voltage                                     |                       | V <sub>DS</sub>  | 30        | V          |  |
| Gate-Source Voltage                                      |                       | $V_{GS}$         | ±20       | V          |  |
| Continuous Drain Current                                 | T <sub>A</sub> = 25℃  |                  | 10        | Α          |  |
|                                                          | T <sub>A</sub> = 70°C | - I <sub>D</sub> | 8         | A          |  |
| Drain Current-Pulsed <sup>1</sup>                        |                       | I <sub>DM</sub>  | 55        | Α          |  |
| Avalanche Current                                        |                       | I <sub>AS</sub>  | 22        | Α          |  |
| Single Pulse Avalanche Energy <sup>1</sup>               |                       | E <sub>AS</sub>  | 24        | mJ         |  |
| Power Dissipation                                        |                       | P <sub>tot</sub> | 2         | W          |  |
| Thermal Resistance from Junction to Lead                 |                       | $R_{\theta JL}$  | 40        | °C/W       |  |
| Thermal Resistance from Junction to Ambient <sup>2</sup> |                       | R <sub>eJA</sub> | 62.5      | °C/W       |  |
| Junction and Storage Temperature Range                   |                       | $T_J, T_{STG}$   | -55~ +150 | $^{\circ}$ |  |

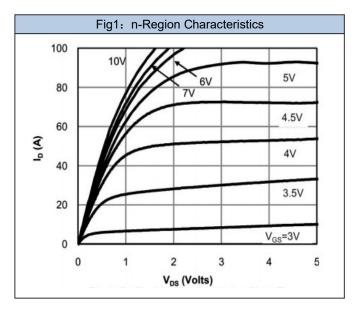


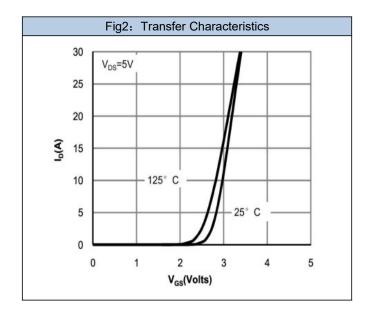
#### 4. Electrical Characteristics

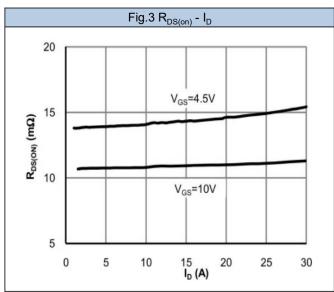
Rating at 25°C ambient temperature unless otherwise specified.

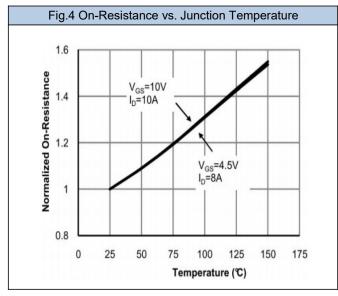
| Parameter                              | Symbol               | Test Condition                                                        | Min | Тур  | Max  | Units |
|----------------------------------------|----------------------|-----------------------------------------------------------------------|-----|------|------|-------|
| Off Characteristics                    |                      |                                                                       |     |      |      |       |
| Drain-source breakdown voltage         | V(BR) DSS            | V <sub>G</sub> s = 0V, I <sub>D</sub> =250µA                          | 30  |      |      | V     |
| Zero gate voltage drain current        | loss                 | V <sub>DS</sub> =30V                                                  |     |      | 1    | μA    |
| Gate-source leakage current            | Igss                 | V <sub>GS</sub> =±20V                                                 |     |      | ±100 | nA    |
| On characteristics <sup>3</sup>        |                      |                                                                       |     |      |      |       |
|                                        | Dans,                | Vgs =10V, ID =10A                                                     |     | 10.8 | 13   | mΩ    |
| Drain-source on-resistance             | RDS(on)              | Vgs =4.5V, ID =5A                                                     |     | 14   | 17.5 | mΩ    |
| Forward tranconductance                | grs                  | V <sub>DS</sub> =5V, I <sub>D</sub> =10A                              |     | 43   |      | S     |
| Gate threshold voltage                 | V <sub>G</sub> S(th) | V <sub>DS</sub> =V <sub>GS</sub> , I <sub>D</sub> =250µA              | 1   |      | 2.5  | V     |
| Dynamic Characteristics <sup>4</sup>   |                      |                                                                       |     | -    |      |       |
| Gate resistance                        | $R_{g}$              | $V_{DS} = 0 \text{ V}, V_{GS} = 0 \text{V}, f = 1 \text{ MHz}$        |     |      | 2.4  | Ω     |
| Input capacitance                      | Ciss                 |                                                                       |     | 760  |      | pF    |
| Output capacitance                     | Coss                 | V <sub>DS</sub> =15V,V <sub>GS</sub> =0V,f =1MHz                      |     | 125  |      | pF    |
| Reverse transfer capacitance           | Crss                 |                                                                       |     | 70   |      | pF    |
| Switching Characteristics <sup>4</sup> |                      |                                                                       |     |      |      |       |
| Onto the same total                    | $Q_g$                | $V_{DS} = 15 \text{ V}, I_{D} = 10 \text{ A}, V_{GS} = 4.5 \text{ V}$ |     | 6.6  |      | nC    |
| Gate charge total                      |                      |                                                                       |     | 14   |      | IIC   |
| Gate-Source Charge                     | $Q_gs$               | V <sub>DS</sub> =15V,I <sub>D</sub> =10A,V <sub>GS</sub> =10V         |     | 2.4  |      | nC    |
| Gate-Drain Charge                      | $Q_{gd}$             |                                                                       |     | 3    |      | nC    |
| Turn-on delay time                     | td(on)               |                                                                       |     | 4.4  |      | nS    |
| Turn-on rise time                      | tr                   | $V_{GS} = 10 \text{ V}, V_{DS} = 15 \text{V},$                        |     | 9    |      | nS    |
| Turn-off delay time                    | td(off)              | $R_L = 1.5 \Omega$ , $R_{GEN} = 3 \Omega$                             |     | 17   |      | nS    |
| Turn-off fall time                     | tf                   |                                                                       |     | 6    |      | nS    |
| Source-Drain Diode characteristi       | cs <sup>4</sup>      |                                                                       |     |      |      |       |
| Body Diode Voltage                     | VsD                  | Is=1A,V <sub>G</sub> s=0V                                             |     |      | 1    | V     |
| Body Diode Reverse Recovery Tim        | trr                  | I <sub>F</sub> =10A, di/dt = 100 A / μs                               |     | 7    |      | nS    |
| Body Diode Reverse Recovery<br>Charge  | Qrr                  | I <sub>F</sub> =10A, di/dt = 100 A / μs                               |     | 8    |      | nC    |

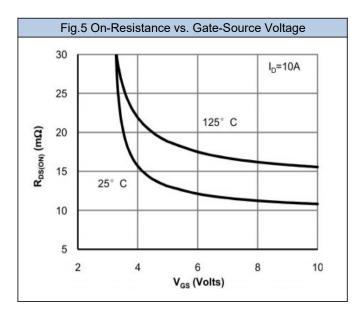
#### Notes:

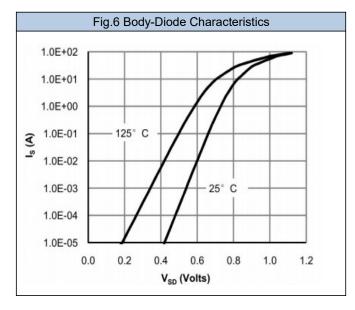

The value in any given application depends on the user's specific board design.


<sup>1.</sup>Repetitive rating, pulse width limited by junction temperature  $T_{J(MAX)}$ =150  $^{\circ}$ C. Ratings are based on low frequency and duty cycles to keep initial  $T_J$ =25  $^{\circ}$ C


<sup>2.</sup>The value of R $_{\theta JA}$  is measured with the device mounted on 1in $^2$  FR-4 board with 2oz. Copper, in a still air environment with T $_A$  =25 $^{\circ}$ C

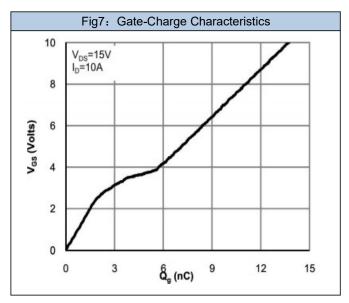


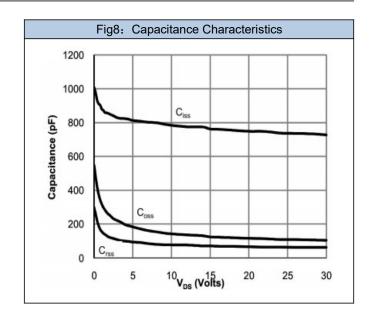


# 5. Rating And Characteristic Curves

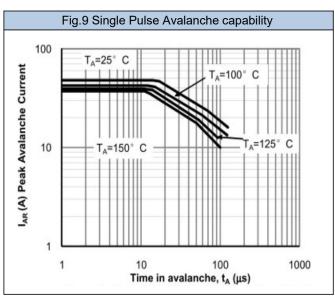


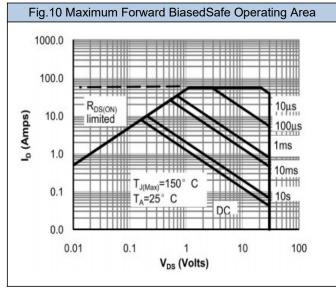


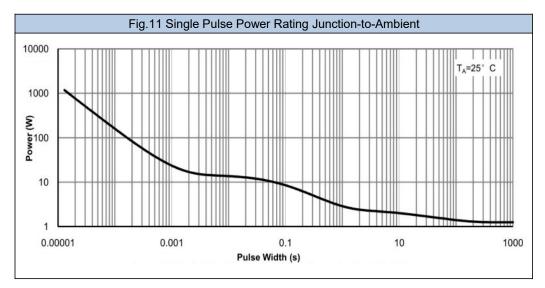


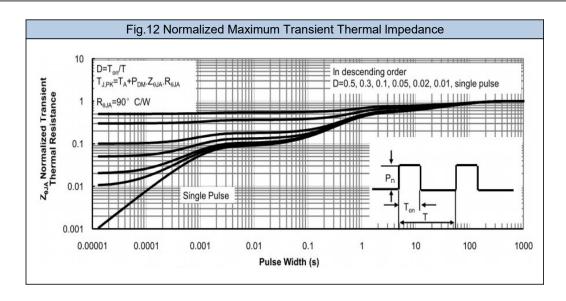





### 5. Rating And Characteristic Curves

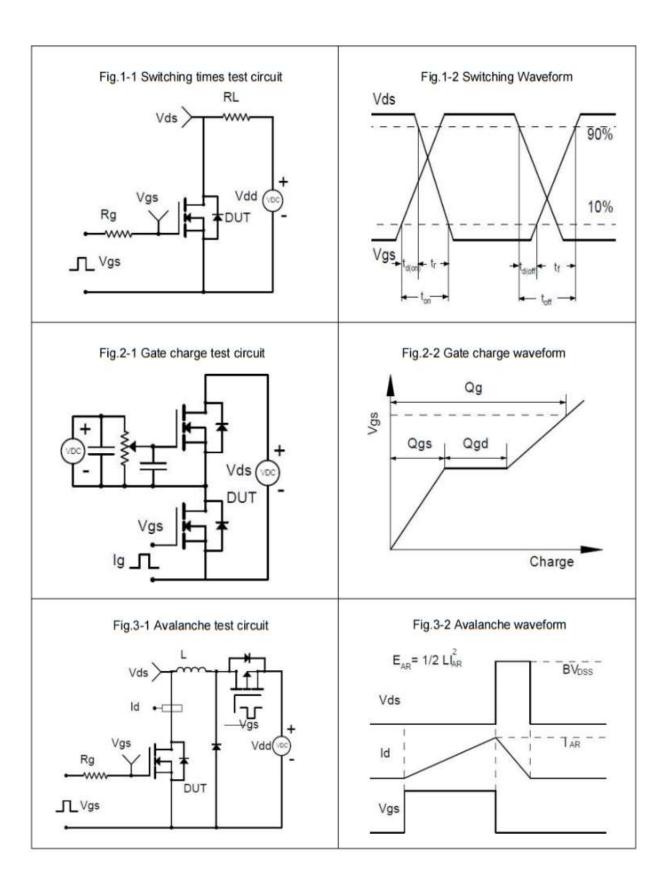






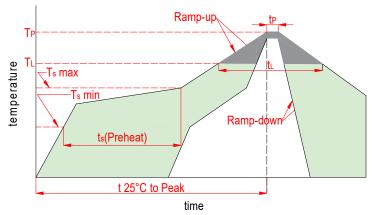




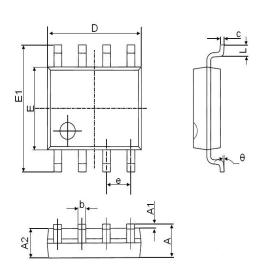

## 5. Rating And Characteristic Curves






#### 6. Test Circuits






# 7. Soldering Parameters



| Reflow Condition                                           |                                       | Lead-free              |  |
|------------------------------------------------------------|---------------------------------------|------------------------|--|
|                                                            | Temp. min(T <sub>s</sub> (min))       | 150℃                   |  |
| Pre Heat                                                   | Temp. max(T <sub>s</sub> (min))       | 200℃                   |  |
|                                                            | Time(min to max)(t <sub>s</sub> )     | 60~180s                |  |
| Aver. ramp up rate(Liquidus Temp.)(T <sub>L</sub> )to peak |                                       | 3℃/s max               |  |
| T <sub>S</sub> (max) to                                    | o T <sub>L</sub> -Ramp-up Rate        | 3℃/s max               |  |
| Reflow                                                     | Temp.(T <sub>L</sub> )(Liquidus)      | <b>217</b> ℃           |  |
|                                                            | Temp.(t <sub>L</sub> )(Liquidus)      | 60~150s                |  |
| Peak Tem                                                   | np.(T <sub>P</sub> )                  | 260 <sup>+0/-5</sup> ℃ |  |
| Time with                                                  | in actual peak Temp.(t <sub>p</sub> ) | 30s max                |  |
| Ramp-down Rate                                             |                                       | 6℃/s max               |  |
| Time 25℃ to peak Tempe.(T <sub>p</sub> )                   |                                       | 8 minutes max          |  |
| Do not exceed                                              |                                       | 260℃                   |  |

## 8. Dimensions



| Dimensions    | Inches     |       | Millimeters |       |  |
|---------------|------------|-------|-------------|-------|--|
| Difficitsions | Min        | Max   | Min         | Max   |  |
| Α             | 0.053      | 0.069 | 1.350       | 1.750 |  |
| A1            | 0.004      | 0.010 | 0.100       | 0.250 |  |
| A2            | 0.053      | 0.061 | 1.350       | 1.550 |  |
| b             | 0.012      | 0.020 | 0.300       | 0.510 |  |
| С             | 0.007      | 0.009 | 0.170       | 0.230 |  |
| D             | 0.185      | 0.201 | 4.700       | 5.100 |  |
| E             | 0.150      | 0.161 | 3.800       | 4.100 |  |
| E1            | 0.228      | 0.244 | 5.800       | 6.200 |  |
| е             | 0.050(BSC) |       | 1.270(BSC)  |       |  |
| L             | 0.016      | 0.031 | 0.400       | 0.800 |  |
| θ             | 0°         | 8°    | 0°          | 8°    |  |

# 9. Package Information

| Package | Part Number | Marking Code |
|---------|-------------|--------------|
| SOP-8   | XNM10N03ST  | XNM10N03ST   |



# Important Notice and Disclaimer

- · Reproducing and modifying information of the document is prohibited without from XINNUO.
- XINNUO reserves the right to make changes to this document and its products and specifications.
- XINNUO disclaims any and all liability arising out of the application or use of any product including damages incidentally and consequentially occurred.
- XINNUO does not assume any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.
- Applications shown on the here in document are examples of standard use and operation. Customers are responsible in comprehending the suitable use in particular applications.XINNUO makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
- The products shown her are not designed and authorized for equipments requiring high level of reliability or relating to human life and for any applications concerning life-saving or life-sustaining, such as medical instruments, transportation equipment, aerospace machinery et cetera. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify XINNUO for any damages resulting from such improper use or sale.
- Since XINNUO uses lot number as the tracking base, please provide the lot number for tracking when complaining.